Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Adv Mater ; 36(15): e2309625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38224595

RESUMEN

The implementation of low-cost and rapid technologies for the on-site detection of mycotoxin-contaminated crops is a promising solution to address the growing concerns of the agri-food industry. Recently, there have been significant developments in surface-enhanced Raman spectroscopy (SERS) for the direct detection of mycotoxins in food and feed. This review provides an overview of the most recent advancements in the utilization of SERS through the successful fabrication of novel nanostructured materials. Various bottom-up and top-down approaches have demonstrated their potential in improving sensitivity, while many applications exploit the immobilization of recognition elements and molecular imprinted polymers (MIPs) to enhance specificity and reproducibility in complex matrices. Therefore, the design and fabrication of nanomaterials is of utmost importance and are presented herein. This paper uncovers that limited studies establish detection limits or conduct validation using naturally contaminated samples. One decade on, SERS is still lacking significant progress and there is a disconnect between the technology, the European regulatory limits, and the intended end-user. Ongoing challenges and potential solutions are discussed including nanofabrication, molecular binders, and data analytics. Recommendations to assay design, portability, and substrate stability are made to help improve the potential and feasibility of SERS for future on-site agri-food applications.


Asunto(s)
Micotoxinas , Nanoestructuras , Espectrometría Raman/métodos , Reproducibilidad de los Resultados , Alimentos
2.
ACS Appl Nano Mater ; 6(12): 10431-10440, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37384129

RESUMEN

Embedding Raman reporters within nanosized gaps of metallic nanoparticles is an attractive route for surface-enhanced Raman spectroscopy (SERS) applications, although often this involves complex synthesis procedures that limit their practical use. Herein, we present the tip-selective direct growth of silver satellites surrounding gold nanostars (AuNSt@AgSAT), mediated by a dithiol Raman reporter 1,4-benzenedithiol (BDT). We propose that BDT is embedded within nanogaps which form between the AuNSt tips and the satellites, and plays a key role in mediating the satellite growth. Not only proposing a rationale for the mechanistic growth of the AuNSt@AgSAT, we also demonstrate an example for its use for the detection of Hg2+ ions in water. The presence of Hg2+ resulted in amalgamation of the AuNSt@AgSAT, which altered both its structural morphology and Raman enhancement properties. This provides a basis for the detection where the Raman intensity of BDT is inversely proportional to the Hg2+ concentrations. As a result, Hg2+ could be detected at concentrations as low as 0.1 ppb. This paper not only provides important mechanistic insight into the tip-selective direct growth of the anisotropic nanostructure but also proposes its excellent Raman enhancement capability for bioimaging as well as biological and chemical sensing applications.

3.
Biosens Bioelectron ; 220: 114857, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36335710

RESUMEN

Bacterial pathogens represent a safety concern in the food industry, and this is amplified by the lack of sensing devices that can be applied on-site by non-trained personnel. In this study, peroxidase-mimicking activity of gold nanostars was exploited to develop a user-friendly colourimetric sensor. A smartphone was exploited as an image reader and analyser, empowered with a novel App developed in-house. The mobile App was evaluated and compared with a commercial smartphone App for its capability to quantify generated colourimetric signals. A major obstacle found with sensors relying on gold nanozymes is the fact that modification of the surface of gold nanoparticles with biorecognition elements generally lead to a suppression of their nanozyme activity. This drawback was overcome by introducing an autocatalytic growth step, which successfully restored the peroxidase-mimicking activity through generation of new gold nanoseeds acting as catalytic centres. A proof-of-concept using this sensing mechanism was developed targeting Mycobacterium bovis, a zoonotic pathogen primarily found in cattle but that can be transmitted to humans by consumption of contaminated food and cause tuberculosis disease. The resulting smartphone-based immunological sensor has shown promising results with a linear response between 104 - 106 CFU/mL, enabling detection of M. bovis at concentrations as low as 7.2·103 CFU/mL in buffer conditions. It is anticipated that the concept of the developed approach will have applicability in many fields relying on smartphone-based biosensing.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Mycobacterium bovis , Técnicas Biosensibles/métodos , Oro , Ligandos , Mycobacterium bovis/aislamiento & purificación , Peroxidasas , Teléfono Inteligente
4.
Sci Rep ; 12(1): 11411, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794131

RESUMEN

Glass biodeterioration by fungi has caused irreversible damage to valuable glass materials such as cultural heritages and optical devices. To date, knowledge about metabolic potential and genomic profile of biodeteriorative fungi is still scarce. Here, we report for the first time the whole genome sequence of Curvularia eragrostidis C52 that strongly degraded silica-based glasses coated with fluorine and hafnium, as expressed by the hyphal surface coverage of 46.16 ± 3.3% and reduced light transmission of 50.93 ± 1.45%. The genome of C. eragrostidis C52 is 36.9 Mb long with a GC content of 52.1% and contains 14,913 protein-coding genes, which is the largest genome ever recorded in the genus Curvularia. Phylogenomic analysis revealed C. eragrostidis C52 formed a distinct cluster with Curvularia sp. IFB-Z10 and was not evolved from compared genomes. Genome-wide comparison showed that strain C52 harbored significantly higher proportion of proteins involved in carbohydrate-active enzymes, peptidases, secreted proteins, and transcriptional factors, which may be potentially attributed to a lifestyle adaptation. Furthermore, 72 genes involved in the biosynthesis of 6 different organic acids were identified and expected to be crucial for the fungal survival in the glass environment. To form biofilm against stress, the fungal strain utilized 32 genes responsible for exopolysaccharide production. These findings will foster a better understanding of the biology of C. eragrostidis and the mechanisms behind fungal biodeterioration in the future.


Asunto(s)
Aclimatación , Curvularia , Composición de Base , Genoma Fúngico
5.
ACS Appl Bio Mater ; 5(6): 2712-2725, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35545815

RESUMEN

In the present study, a facile, eco-friendly, and controlled synthesis of gold nanoparticles (Au NPs) using Prunus nepalensis fruit extract is reported. The biogenically synthesized Au NPs possess ultra-active intrinsic peroxidase-like activity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Chemical analysis of the fruit extract demonstrated the presence of various bioactive molecules such as amino acids (l-alanine and aspartic acids), organic acids (benzoic acid and citric acid), sugars (arabinose and glucose), phenolic acid, and bioflavonoids (niacin and myo-inositol), which likely attributed to the formation of stable biogenic Au NPs with excellent peroxidase-mimicking activity. In comparison with the natural horseradish peroxidase (HRP) enzyme, the biogenic Au NPs displayed a 9.64 times higher activity with regard to the reaction velocity at 6% (v/v) H2O2, presenting a higher affinity toward the TMB substrate. The Michaelis-Menten constant (KM) values for the biogenic Au NPs and HRP were found to be 6.9 × 10-2 and 7.9 × 10-2 mM, respectively, at the same concentration of 100 pM. To investigate its applicability for biosensing, a monoclonal antibody specific for Mycobacterium bovis (QUBMA-Bov) was directly conjugated to the surface of the biogenic Au NPs. The obtained results indicate that the biogenic Au NPs-QUBMA-Bov conjugates are capable of detecting M. bovis based on a colorimetric immunosensing method within a lower range of 100 to 102 cfu mL-1 with limits of detection of ∼53 and ∼71 cfu mL-1 in an artificial buffer solution and in a soft cheese spiked sample, respectively. This strategy demonstrates decent specificity in comparison with those of other bacterial and mycobacterial species. Considering these findings together, this study indicates the potential for the development of a cost-effective biosensing platform with high sensitivity and specificity for the detection of M. bovis using antibody-conjugated Au nanozymes.


Asunto(s)
Nanopartículas del Metal , Mycobacterium bovis , Prunus , Frutas/química , Oro/química , Peroxidasa de Rábano Silvestre/química , Peróxido de Hidrógeno/análisis , Nanopartículas del Metal/química , Mycobacterium bovis/metabolismo , Prunus/metabolismo
6.
Blood ; 140(5): 504-515, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35512184

RESUMEN

Patients with relapsed or refractory large B-cell lymphomas (rrLBCL) can achieve long-term remission after CD19 chimeric antigen receptor T-cell therapy (CART19). However, more than half of recipients will experience treatment failure. Thus, approaches are needed to identify high-risk patients who may benefit from alternative or consolidative therapy. We evaluated low-pass whole-genome sequencing (lpWGS) of cell-free DNA (cfDNA) before CART19 as a new approach for risk stratification. We performed lpWGS on pretreatment plasma samples from 122 patients at time of leukapheresis who received standard-of-care CART19 for rrLBCL to define DNA copy number alterations (CNAs). In multivariable selection, high focal CNA score (FCS) denoting genomic instability was the most significant pretreatment variable associated with inferior 3-month complete response rates (28% vs 56%, P = .0029), progression-free survival (PFS; P = .0007; hazard ratio, 2.11), and overall survival (OS; P = .0026; hazard ratio, 2.10). We identified 34 unique focal CNAs in 108 (89%) patients; of these, deletion 10q23.3 leading to loss of FAS death receptor was the most highly associated with poor outcomes, leading to inferior PFS (P < .0001; hazard ratio, 3.49) and OS (P = .0027; hazard ratio, 2.68). By combining FCS with traditional markers of increased tumor bulk (elevated lactate dehydrogenase and >1 extranodal site), we built a simple risk model that could reliably risk stratify patients. Thus, lpWGS of cfDNA is a minimally invasive assay that could rapidly identify high-risk patients and may guide patient selection for and targeted therapies to evaluate in future clinical trials.


Asunto(s)
Ácidos Nucleicos Libres de Células , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Antígenos CD19 , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapia , Medición de Riesgo
7.
NPJ Sci Food ; 6(1): 3, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027565

RESUMEN

Pesticides are a safety issue globally and cause serious concerns for the environment, wildlife and human health. The handheld detection of four pesticide residues widely used in Basmati rice production using surface-enhanced Raman spectroscopy (SERS) is reported. Different SERS substrates were synthesised and their plasmonic and Raman scattering properties evaluated. Using this approach, detection limits for pesticide residues were achieved within the range of 5 ppb-75 ppb, in solvent. Various extraction techniques were assessed to recover pesticide residues from spiked Basmati rice. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERs) acetate extraction was applied and characteristic spectral data for each pesticide was obtained from the spiked matrix and analysed using handheld-SERS. This approach allowed detection limits within the matrix conditions to be markedly improved, due to the rapid aggregation of nanogold caused by the extraction medium. Thus, detection limits for three out of four pesticides were detectable below the Maximum Residue Limits (MRLs) of 10 ppb in Basmati rice. Furthermore, the multiplexing performance of handheld-SERS was assessed in solvent and matrix conditions. This study highlights the great potential of handheld-SERS for the rapid on-site detection of pesticide residues in rice and other commodities.

8.
Anal Chim Acta ; 1184: 339037, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34625241

RESUMEN

A ferromagnetic gold nanoparticle based immune detection assay, exploiting the enhanced signal amplification of inorganic nanozymes, was developed and evaluated for its potential application in the detection of Mycobacterium tuberculosis complex (MTBC) organisms, and simultaneous identification of Mycobacterium bovis. Ferromagnetic gold nanoparticles (Au-Fe3O4 NPs) were prepared and their intrinsic peroxidase-like activity exploited to catalyse 3,3',5',5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). When the Au-Fe3O4 NPs were functionalised by direct coupling with MTBC-selective antibodies, a nanoparticle based immune detection assay (NPIDA) was developed which could detect Mycobacterium tuberculosis (MTB) and differentiate M. bovis. In the assay, the intrinsic magnetic capability of the functionalised Au-Fe3O4 NPs was used in sample preparation to capture target bacterial cells. These were incorporated into a novel immunoassay which used species selective monoclonal antibodies (mAb) to detect bound target. The formation of a blue TMB oxidation product, with a peak absorbance of 370 nm, indicated successful capture and identification of the target. The detection limit of the NPIDA for both MTB and M. bovis was determined to be comparable to conventional ELISA using the same antibodies. Although limited matrix effects were observed in either assay, the NPIDA offers a reduced time to confirmatory identification. This novel NPIDA was capable of simultaneous sample concentration, purification, immunological detection and speciation. To our knowledge, it represents the first immune-based diagnostic test capable of identifying MTBC organisms and simultaneously differentiating M. bovis.


Asunto(s)
Nanopartículas del Metal , Mycobacterium bovis , Mycobacterium tuberculosis , Catálisis , Diferenciación Celular , Pruebas Diagnósticas de Rutina , Oro , Peróxido de Hidrógeno , Inmunoensayo
9.
Nanomicro Lett ; 13(1): 193, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34515917

RESUMEN

Nanomaterial-based artificial enzymes (or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes. Numerous advantages of nanozymes such as diverse enzyme-mimicking activities, low cost, high stability, robustness, unique surface chemistry, and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal, metal oxide, metal-organic framework-based nanozymes have been exploited for the development of biosensing systems, which present the potential for point-of-care analysis. To highlight recent progress in the field, in this review, more than 260 research articles are discussed systematically with suitable recent examples, elucidating the role of nanozymes to reinforce, miniaturize, and improve the performance of point-of-care diagnostics addressing the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical, colorimetric, fluorescent, and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However, basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size, shape, composition, surface charge, surface chemistry as well as external parameters such as pH or temperature, these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore, it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.

10.
Front Cell Dev Biol ; 8: 412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582700

RESUMEN

Low density lipoprotein receptor related protein-1 (LRP-1) is a large ubiquitous endocytic receptor mediating the clearance of various molecules from the extracellular matrix. Several studies have shown that LRP-1 plays crucial roles during tumorigenesis functioning as a main signal pathway regulator, especially by interacting with other cell-surface receptors. Discoïdin Domain Receptors (DDRs), type I collagen receptors with tyrosine kinase activity, have previously been associated with tumor invasion and aggressiveness in diverse tumor environments. Here, we addressed whether it could exist functional interplays between LRP-1 and DDR1 to control colon carcinoma cell behavior in three-dimensional (3D) collagen matrices. We found that LRP-1 established tight molecular connections with DDR1 at the plasma membrane in colon cancer cells. In this tumor context, we provide evidence that LRP-1 regulates by endocytosis the cell surface levels of DDR1 expression. The LRP-1 mediated endocytosis of DDR1 increased cell proliferation by promoting cell cycle progression into S phase and decreasing apoptosis. In this study, we identified a new molecular way that controls the cell-surface expression of DDR1 and consequently the colon carcinoma cell proliferation and apoptosis and highlighted an additional mechanism by which LRP-1 carries out its sensor activity of the tumor microenvironment.

11.
Biophys J ; 118(10): 2400-2410, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32375021

RESUMEN

Bacteria tumble periodically, following environmental cues. Whether they can tumble near a solid surface is a basic issue for the inception of infection or mineral biofouling. Observing freely swimming Escherichia coli near and parallel to a glass surface imaged at high magnification (×100) and high temporal resolution (500 Hz), we identified tumbles as events starting (or finishing, respectively) in abrupt deceleration (or reacceleration, respectively) of the body motion. Selected events show an equiprobable clockwise (CW) or counterclockwise change in direction that is superimposed on a surface CW path because of persistent propulsion. These tumbles follow a common long (about 300 ± 100 ms, N = 52) deceleration-reorientation-acceleration pattern. A wavelet transform multiscale analysis shows these tumbles cause in-plane diffusive reorientations with 1.5 rad2/s rotational diffusivity, a value that compares with that measured in bulk tumbles. In half of the cases, additional few-millisecond bursts of an almost equiprobable CW or counterclockwise change of direction (12 ± 90°, N = 89) occur within the reorientation stage. The highly dispersed absolute values of change of direction (70 ± 66°, N = 89) of only a few bursts destabilize the cell-swimming direction. These first observations of surface tumbles set a foundation for statistical models of run-and-tumble surface motion different from that in bulk and lend support for chemotaxis near solid surface.


Asunto(s)
Escherichia coli , Modelos Biológicos , Fenómenos Biomecánicos , Quimiotaxis , Flagelos , Modelos Estadísticos
13.
Mikrochim Acta ; 187(3): 164, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32052200

RESUMEN

Gold nanostars (GNST), gold nanospheres (GNP) and carbon black (CB) are chosen as alternative nanomaterials to modify carbon screen-printed electrodes (c-SPEs). The resulting three kinds of modified c-SPEs (GNP-SPE, CB-SPE and GNSP-SPE) were electrochemically and microscopically characterized and compared with standardized c-SPEs after pretreatment with phosphate buffer by pre-anodization (pre-SPE). The results show outstanding electrochemical performance of the carbon black-modified SPEs which show low transient current, low capacitance and good porosity. A competitive chronoamperometric immunoassay for the shellfish toxin domoic acid (DA) is described. The performances of the CB-SPE, GNP-SPE and pre-SPE were compared. Hapten-functionalized magnetic beads were used to avoid individual c-SPE functionalization with antibody while enhancing the signal by creating optimum surface proximity for electron transfer reactions. This comparison shows that the CB-SPE biosensor operated best at a potential near - 50 mV (vs. Ag/AgCl) and enables DA to be determined with a detection limit that is tenfold lower compared to pre-SPE (4 vs. 0.4 ng mL-1). These results show very good agreement with HPLC data when analysing contaminated scallops, and the LOD is 0.7 mg DA kg-1 of shellfish. Graphical abstractSchematic representation of the magnetic bead-based immunoassay for the quantification of domoic acid (DA) in shellfish with nanomaterial-modified screen-printed electrodes. CB, carbon black; GNP, gold nanospheres; GNST, gold nanostars; MB, magnetic beads; DA-mAb, anti-DA monoclonal mouse antibody; HRP-pAb, horseradish conjugated polyclonal goat anti-mouse antibody; DA-BSA, bovine serum albumin conjugated DA; HQ, hydroquinone; BQ, benzoquinone.


Asunto(s)
Técnicas Biosensibles/métodos , Carbono/química , Técnicas Electroquímicas/métodos , Oro/química , Ácido Kaínico/análogos & derivados , Nanoestructuras/química , Ácido Kaínico/química
14.
Nanomicro Lett ; 13(1): 10, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34138170

RESUMEN

In recent years, gold nanoparticles have demonstrated excellent enzyme-mimicking activities which resemble those of peroxidase, oxidase, catalase, superoxide dismutase or reductase. This, merged with their ease of synthesis, tunability, biocompatibility and low cost, makes them excellent candidates when compared with biological enzymes for applications in biomedicine or biochemical analyses. Herein, over 200 research papers have been systematically reviewed to present the recent progress on the fundamentals of gold nanozymes and their potential applications. The review reveals that the morphology and surface chemistry of the nanoparticles play an important role in their catalytic properties, as well as external parameters such as pH or temperature. Yet, real applications often require specific biorecognition elements to be immobilized onto the nanozymes, leading to unexpected positive or negative effects on their activity. Thus, rational design of efficient nanozymes remains a challenge of paramount importance. Different implementation paths have already been explored, including the application of peroxidase-like nanozymes for the development of clinical diagnostics or the regulation of oxidative stress within cells via their catalase and superoxide dismutase activities. The review also indicates that it is essential to understand how external parameters may boost or inhibit each of these activities, as more than one of them could coexist. Likewise, further toxicity studies are required to ensure the applicability of gold nanozymes in vivo. Current challenges and future prospects of gold nanozymes are discussed in this review, whose significance can be anticipated in a diverse range of fields beyond biomedicine, such as food safety, environmental analyses or the chemical industry.

15.
RSC Adv ; 10(50): 29957-29960, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35518224

RESUMEN

We studied parallel G4-mediated protein dimerization and activation by incorporating a RHAU peptide with a fluorescent protein FRET pair CFP/YFP and an apoptotic casp9. Occurrence of energy tranfer (from donor CFP to acceptor YFP) and enhancement of 60-fold cleavage efficiency of casp9 were observed in the presence of parallel G4, which indicated that parallel G4 can induce dimerization and activation of proteins. This novel approach holds a great promise for studying G4-targeting functional dimeric proteins in celllular biology.

16.
Langmuir ; 33(37): 9254-9261, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27996265

RESUMEN

Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.

17.
Biosens Bioelectron ; 92: 502-508, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27825885

RESUMEN

The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2pM (by UV-vis) or 18.0fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3h, thus demonstrating its practicality for food analysis.


Asunto(s)
Campylobacter jejuni/aislamiento & purificación , Colorimetría/métodos , ADN Bacteriano/análisis , Análisis de los Alimentos/métodos , Oro/química , Nanopartículas del Metal/química , Aves de Corral/microbiología , Animales , Infecciones por Campylobacter/microbiología , Pollos , Sondas de ADN/química , Humanos , Nanopartículas del Metal/ultraestructura , Hibridación de Ácido Nucleico/métodos , Sondas ARN/química , Ribonucleasa H/química
18.
ACS Appl Mater Interfaces ; 8(19): 12211-20, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27135935

RESUMEN

The effects of different binders, polyvinylidene difluoride (PVdF), poly(acrylic acid) (PAA), sodium carboxymethyl cellulose (CMC), and cross-linked PAA-CMC (c-PAA-CMC), on the cycling performance and solid electrolyte interphase (SEI) formation on silicon nanoparticle electrodes have been investigated. Electrodes composed of Si-PAA, Si-CMC, and Si-PAA-CMC exhibit a specific capacity ≥3000 mAh/g after 20 cycles while Si-PVdF electrodes have a rapid capacity fade to 1000 mAh/g after just 10 cycles. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) reveal that PAA and CMC react with the surface of the Si nanoparticles during electrode fabrication. The fresh Si-CMC electrode has a thicker surface coating of SiOx than Si-PAA and Si-PAA-CMC electrodes, due to the formation of thicker SiOx during electrode preparation, which leads to lower cyclability. The carboxylic acid functional groups of the PAA binder are reactive toward the electrolyte, causing the decomposition of LiPF6 and dissolution of SiOx during the electrode wetting process. The PAA and CMC binder surface films are then electrochemically reduced during the first cycle to form a protective layer on Si. This layer effectively suppresses the decomposition of carbonate solvents during cycling resulting in a thin SEI. On the contrary, the Si-PVDF electrode has poor cycling performance and continuous reduction of carbonate solvents is observed resulting in the generation of a thicker SEI. Interestingly, the Lewis basic -CO2Na of CMC was found to scavenge HF in electrolyte.

19.
ACS Appl Mater Interfaces ; 7(36): 20004-11, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26305165

RESUMEN

Binder-free silicon (BF-Si) nanoparticle anodes were cycled with 1.2 M LiPF6 in ethylene carbonate (EC), fluoroethylene carbonate (FEC), or EC with 15% FEC (EC:FEC), extracted from cells and analyzed by Hard X-ray Photoelectron Spectroscopy (HAXPES). All of the electrolytes generate an SEI which is integrated with Si containing species. The EC and EC:FEC electrolytes result in the generation of LixSiOy after the first cycle while LixSiOy is only observed after five cycles for the FEC electrolyte. The SEI initially generated from the EC electrolyte is primarily composed of lithium ethylene dicarbonate (LEDC) and LiF. However, after five cycles, the composition changes, especially near the surface of silicon because of decomposition of the LEDC. The SEI generated from the EC:FEC electrolytes contains LEDC, LiF, and poly(FEC) and small changes are observed upon additional cycling. The SEI generated with the FEC electrolyte contains LiF and poly(FEC) and small changes are observed upon additional cycling. The stability of the SEI correlates with the observed capacity retention of the cells.

20.
Biosens Bioelectron ; 63: 472-477, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25129509

RESUMEN

Engineering plasmonic nanomaterials or nanostructures towards ultrasensitive biosensing for disease markers or pathogens is of high importance. Here we demonstrate a systematic approach to tailor effective plasmonic nanorod arrays by combining both comprehensive numerical discrete dipole approximations (DDA) simulation and transmission spectroscopy experiments. The results indicate that 200×50 nm nanorod arrays with 300×500 nm period provide the highest figure of merit (FOM) of 2.4 and a sensitivity of 310 nm/RIU. Furthermore, we demonstrate the use of nanorod arrays for the detection of single nucleotide polymorphism in codon 12 of the K-ras gene that are frequently occurring in early stages of colon cancer, with a sensitivity down to 10 nM in the presence of 100-fold higher concentration of the homozygous genotypes. Our work shows significant potential of nanorod arrays towards point-of-care applications in diagnosis and clinical studies.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias del Colon/genética , ADN de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Polimorfismo de Nucleótido Simple/genética , Resonancia por Plasmón de Superficie/instrumentación , Técnicas Biosensibles/instrumentación , Neoplasias del Colon/diagnóstico , Análisis Mutacional de ADN/instrumentación , ADN de Neoplasias/análisis , Diseño de Equipo , Análisis de Falla de Equipo , Marcadores Genéticos/genética , Humanos , Nanotubos/química , Nanotubos/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...